SUMA K4147: Water Resources and Climate
Summer 2017

Syllabus

Scheduled class times:
Tuesday and Thursday, 6:10-8:00 pm
Note: lectures during first week will be held on 6 July (Thursday) and 7 July (Friday).

Office hours:
By appointment; place TBD

Instructors information:
Dr. Laia Andreu-Hayles ¹ <lah@ldeo.columbia.edu>
Dr. Indrani Pal ² <ip2235@columbia.edu>

Affiliation/Office location:
¹ Tree Ring Lab, Lamont Doherty Earth Observatory (LDEO), EI, Columbia University
² Columbia Water Center, Columbia University

Emails will be responded within 12 hours during the workweek. Emails sent on Saturday may not likely receive a response until Monday.

Course Overview:
The fragility of water resources under a changing climate has received increasing awareness amongst policy makers, planning and environmental agencies, stakeholders and beyond; driven by exciting developments in climate science and bolstered by a surge in media coverage.

An important driver of water resource availability is the interaction between the hydrologic cycle and the climate system. With climate models projecting a future of an increasingly variable and extreme climate system, the resulting impacts on the water cycle are of key relevance to the sustainable management of water resources.

This course will cover the science needed to understand the main features of the global water/hydrologic cycle, the link between science of water and climate, and how climate variability and change is affecting the water cycle, and by association the natural and human systems. Using this knowledge, students will use case studies and review scientific literature to critically evaluate real-world water security issues and develop sustainable solutions to address them.

The interaction between water and climate plays an integral role on the coupling between natural and human systems, and the experiences gained in this course are a valuable complement to other courses in the Sustainability Management Program.
Learning Objectives:
1. Understand the water/hydrological cycle and its connection to climate.
2. Understand how variability and changes in climate affect/will affect water supply/availability on land.
3. Understand how water impacts ecosystems.
4. Learn how to critically evaluate a scientific article and write a review.
5. Diagnose the cause of a climate-related water problem and develop solutions to address it.

-- This syllabus is a guide for our course and is subject to further changes. --

Text/Readings:
There is no assigned textbook for this class. Readings will be taken from reports and scientific articles, and may be supplemented with news articles, depending on current events as the class progresses.

Resources and Communication Channels:
Courseworks/Canvas will be used to distribute reading materials, lecture slides, and to turn in assignments unless specified otherwise. Students are expected to check email on a daily basis during weekdays to stay current with course-related communications.

Course Requirements and Grading:
The course will consist of readings, homework assignments, one exam, and a final project, consisting of a paper and a presentation in class. The final grade will be calculated as follows:

- 5% - Attendance
- 35% - Written critiques
- 10% - Participation
- 20% - Exam
- 30% - Final Project (15% written paper + 15% presentation)

Most classes will be divided in two sections. During the first part the instructor will deliver a theoretical basis, while on the second part a reading discussion will be held.

Final grade letter equivalent

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A+</td>
<td>100% to 98%</td>
<td>C+</td>
<td>< 80% to 77%</td>
</tr>
<tr>
<td>A</td>
<td>< 98% to 93%</td>
<td>C</td>
<td>< 77% to 74%</td>
</tr>
<tr>
<td>A-</td>
<td>< 93% to 90%</td>
<td>C-</td>
<td>< 74% to 70%</td>
</tr>
<tr>
<td>B+</td>
<td>< 90% to 87%</td>
<td>D</td>
<td>< 70% to 66%</td>
</tr>
<tr>
<td>B</td>
<td>< 87% to 84%</td>
<td>F</td>
<td>< 66% to 0%</td>
</tr>
<tr>
<td>B-</td>
<td>< 84% to 80%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Attendance (5% of final grade)
Students are expected to attend class. The attendance grade will be proportional to the number of classes attended. Missing classes without justification may imply losing the complete attendance grade.

Written critiques (35% of final grade)
Written assignments will be requested for 7 scientific papers discussed in class. For all students, these written critiques are due via Courseworks/Canvas at noon of the day of class.

The grades of the 7 written critiques will make up 35% of the student’s total grade.

Each critique must include:
- A short essay giving an overview of the reading (not less than 200 and no more than 300 words)
- Two strengths and two weaknesses of the investigation/reading
- Two critical questions that can be used as a part of the class discussion

The critique should discuss the readings in terms of the topics covered, the strengths and weaknesses of the articles, and critical aspects of the research presented. We have included the following list to act as a guideline for preparing your critique. Not all points need to be included in every critique.

- Provide a general overview
- Explain the main ideas
- Explain important numbers/facts
- Incorporate original thought
- Tie the paper into the overarching theme of the course

Late Submission

Written critiques are due before **NOON on the day of class.** Please let us know of any extenuating circumstances that may prevent you from meeting this deadline as soon as possible. Critiques received after noon will be subject to deductions:

- 12:01 to 6:00 PM (day of class) – 5 point deduction
- 6:01 PM to Midnight on day of class – 10 point deduction
- Day after class – 15 point deduction

Later than day after class– maximum grade possible will be 80. Feedback from the instructor will not be guaranteed.
Participation *(10% of final grade)*

Participation on the topics of discussion of the course will account for 7% of the final grade, while the 3% will be based on the student’s participation in the online discussions and forums in CANVAS. This final grade will be an average from the individual evaluation of the instructors.

This participation grading will be elaborated based on the participation of the students on the discussions of the readings during class, and on these and other topics proposed through Courseworks/Canvas. The students are expected to show critical thinking, respectful interactions with classmates and a positive attitude towards learning and freely discussing the topics proposed. Students are encouraged to share the critical questions from their assignments with their peers.

Exam *(20% of final grade)*

There will be one in-class two-hour written exam that will evaluate concepts, ideas, themes and issues that were covered in class until the evaluation date. It will be composed of short-answer essay questions. The specific point value of each question will be detailed at the time of the exam.

Final project *(30% of final grade)*

The final project for this course will be a paper on an issue of the student’s choice related to water resources and climate. The total grade for the final project (30%) will be based on the written paper (15%) and the presentation (15%).

A mandatory project proposal will be due on July 24th for topic approval. The proposal will not be graded; it is meant to ensure an appropriate topic and it is a pre-requisite for the acceptance of the final project. For the proposal we request the submission of a document of less than one page describing the project and how you plan to approach your paper. Failing to turn the proposal on a timely manner will forfeit the submission of the final project or points removal from the final written project.

The student will be responsible for reading primary source material on the topic, evaluating the scientific certainty/uncertainty behind the issue, and recommending a solution/management/adaptation strategy as appropriate depending on the topic discussed. The student will also be responsible for making the appropriate links and associations with the relevant theoretical material covered during the course.

The written paper will be due on August 9th. This paper will be evaluated based on: 1) demonstrating a critical understanding of the scientific literature that addresses the selected topic; and 2) proposing a creative, but feasible solution/management/adaptation strategy to the issue. The written paper grades will be an average from the individual evaluation of the instructors.

The presentations will take place on August 10th. The presentation will be evaluated for the ability to clearly present the problem and solution to your peers, to address any questions and
to defend the proposed strategy on a timely manner (TBD before the presentation). Presentation grades will be an average from the individual evaluations of the instructors and classmates.

More complete final project guidelines will be circulated through Courseworks/Canvas in advance of the deadlines.

Policies and expectations: Attendance, late papers, missed tests, class behavior and civility
Students are expected to arrive on time, attend all classes, and to stay until the end of class unless they have notified the instructor otherwise. Students are responsible for completing assigned readings and homework. Late assignments will be marked down unless an extension was granted. We ask that mobile devices be turned off during class.

COURSE SCHEDULE

<table>
<thead>
<tr>
<th>Date</th>
<th>LECTURE/EVENTS</th>
<th>MAIN READING</th>
<th>ADDITIONAL MATERIAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jul 6th</td>
<td>LECTURE 1 Water resources and climate: an overview</td>
<td>- Written critique 1 due</td>
<td>1 Khoo (2009) 2 Sivapalan et al. (2012) 3 Schwarz et al. (2011)</td>
</tr>
<tr>
<td>Date</td>
<td>LECTURE/EVENTS</td>
<td>ASSIGNMENTS</td>
<td>ADDITIONAL MATERIAL</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>--------------------------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>Jul 24th</td>
<td></td>
<td>FINAL PROJECT PROPOSAL DUE</td>
<td>22 Cobb et al. (2003)</td>
</tr>
<tr>
<td>Jul 25th</td>
<td>LECTURE 7</td>
<td>- Written critique 5 due</td>
<td>21 Cook et al. (2010)</td>
</tr>
<tr>
<td></td>
<td>Paleo-perspectives on hydroclimate variability</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jul 27th</td>
<td>LECTURE 8</td>
<td>- Written critique 6 due</td>
<td>24 Pederson et al. (2014)</td>
</tr>
<tr>
<td></td>
<td>The coupling of hydroclimate variability with human systems</td>
<td></td>
<td>25 deMenocal (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26 Cook et al. (2010)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 Gemenne et al. (2011)</td>
</tr>
<tr>
<td>Aug 1st</td>
<td>LECTURE 9</td>
<td>- Written critique 7 due</td>
<td>28 Sedlácek & Knutti (2014)</td>
</tr>
<tr>
<td></td>
<td>Climate change projections</td>
<td></td>
<td>8 Bates et al. (2008)- Chapter 4&5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>29 Hawkins (2011)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30 Taylor et al. (2012)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31 Cook et al. (2015)</td>
</tr>
<tr>
<td>Aug 3rd</td>
<td>CLASS 10</td>
<td>STUDY!</td>
<td></td>
</tr>
<tr>
<td>Aug 8th</td>
<td>CLASS 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WORKSHOP:</td>
<td></td>
<td>32 Greene et al. (2011)</td>
</tr>
<tr>
<td></td>
<td>Tools for Analyses</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I. IRI Timescales decomposition tool</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II. Climate Explorer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aug 9th</td>
<td></td>
<td>FINAL PROJECT DUE</td>
<td></td>
</tr>
<tr>
<td>Aug 10th</td>
<td>CLASS 12</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FINAL PROJECT PRESENTATIONS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reading Material References

Appendix A

Policies and Expectations:

Academic Integrity

The School of Continuing Education does not tolerate cheating and/or plagiarism in any form. Those students who violate the Code of Academic and Professional Conduct will be subject to the Dean’s Disciplinary Procedures. The Code of Academic and Professional Conduct can be viewed online:

http://ce.columbia.edu/node/217

Please familiarize yourself with the proper methods of citation and attribution. The University provides some useful resources online; we strongly encourage you to familiarize yourself with these various styles before conducting your research:

http://library.columbia.edu/locations/undergraduate/citationguide.html

Violations of the Code of Academic and Professional Conduct will be reported to the Associate Dean for Student Affairs.

You can find reference and citation management tools at:

http://library.columbia.edu/research/citation-management.html
http://www.chicagomanualofstyle.org/tools_citationguide.html

Accessibility Statement

Columbia is committed to providing equal access to qualified students with documented disabilities. A student’s disability status and reasonable accommodations are individually determined based upon disability documentation and related information gathered through the intake process. For more information regarding this service, please visit the University’s Health Services website:

http://health.columbia.edu/services/ods/support